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In the course of the ozonolysis of the bicyclo[2.2.1]heptene anhydride 1, the three bis-lactones 3–5 have
been obtained (the structures were confirmed by X-ray crystallographic analysis).

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Ozonolysis is an important process for oxidations in organic
synthesis due to the easy access to ozone and also to the formation
of little amount of wastes compared to several other oxidative
methodologies.1 Therefore, a deeper understanding of the reactiv-
ity of organic species towards ozone is an important field in organ-
ic synthesis. Previous work of our laboratory has shown that the
ozonolysis of hindered norbornene derivatives gave rise to unex-
pected products.2 Here, we wish to report that an unprecedented
neighbouring effect, in the course of the ozonolysis of such sub-
strates, led to the formation of some unexpected polyoxygenated
products.

Depending on the solvent employed, the ozonolysis of anhy-
dride 1 led to compounds 2–5 (Scheme 1).3 Fortunately, crystals
of 2–5 were suitable for X-ray analysis4 (Figs. 1 and 2).5 Concerning
the formation of 2, it is well known that the ozonolysis of hindered
alkenes sometimes leads to the epoxide formation as it is the case
with longifolene.6

But the formation of 3–5 was unexpected, and is more difficult
to be explained. First, we can assume that a partial allylic function-
alization of anhydride 1 occurs to give allylic alcohol 6 or allylic
chloride 7 (not isolated) (Scheme 2). The ozonation of the C–H
bonds in hydrocarbons adsorbed on silica gel is a known process.7
ll rights reserved.
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Scheme 1. Ozonolysis of the anhydride 1.
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Figure 2. ORTEP drawing for 5.
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Figure 1. ORTEP drawing for 4. Non-hydrogen atoms are drawn with 50%
probability thermal ellipsoids.
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Plesničar reported that HOOO radicals are most likely involved in
the ozonation of saturated hydrocarbons and cumene.8 Moreover,
ozonolysis of norbornane in CCl4 afforded 2-chloronorbornanes
(8.2% at 30% conversion).9 However, to the best of our knowledge,
no example of allylic functionalization in the course of an ozonol-
ysis reaction has been reported so far.

Then, the ozonolysis of compounds 6 and 7 would form 3 or 5,
respectively. The most striking result in the course of the ozonoly-
sis of the carbon–carbon double bond of 1, 6 or 7 is the formation
of a bislactone moiety with an additional ether bridge in 3–5. A
reasonable mechanistic hypothesis which explains such anoma-
lous oxidation reaction involves the formation of the endo primary
ozonide (1,2,3-trioxolane) a,10 its fragmentation into aldehyde and
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Scheme 2. Allylic functionalization of anhydride 1.
ketone oxide b,11,12 followed by a nucleophilic attack of the oxygen
of ketone oxide to the adjacent carboxylic group to give carboxyl-
ate anion c (Scheme 3). Then, a nucleophilic addition of this car-
boxylate anion to the adjacent aldehyde would give d. Finally,
the addition of the oxy anion of the tetrahedral intermediate to
the O-acyloxy ketone gave rise to e. Treatment by dimethylsulfur
induces the reduction of the peroxy bond of e with the release of
DMSO and the formation of products 3–5.13

The topochemically controlled structure of a and other interme-
diates b and c minimizes both the entropic and enthalpic contribu-
tions of the free energy of the various transition states.14–16 At the
RB3LYP/6-311++G(d,p) level of the theory, the calculated structure
of a reveals that the anhydride and the primary ozonide moieties
are very close. Moreover, the conformation b0 of intermediate b
where the oxygen of the carbonyl oxide is close to the carboxylic
group with a proper orientation is less stable than the fully relaxed
conformation b of only 3.13 kcal/mol (the distance is slightly long-
er than the sum of van der Waals radii)17 (‘propinquity’ effect)
(Scheme 4).18 The term of near attack conformation (NAC) has been
introduced by Bruice and co-workers to define the required confor-
mation for juxtaposed reactants to enter a transition state.19 NAC
structures (NACs) possess the proper geometric juxtaposition of
groups for a reaction to proceed directly to a transition state with-
out bond stretching/contraction, angle bending or torsional mo-
tion.20 When the ground state consists of only NACs, the rate
enhancement can be as large as 108 as it is the case, for example,
when a nucleophile is positioned <3 Å above a carbonyl prior to
addition.21,22 According to Menger, ‘the rate of reaction between
functionalities A and B is proportional to the time that A and B re-
side within a critical distance’ estimated to �2.8 Å.23 In our case,
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Scheme 3. Mechanism of the formation of 4 (and similarly, 3 and 5).
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Scheme 4. Calculated structures (at the RB3LYP/6-311++G(d,p) level of the theory)
of primary ozonide a and carbonyl oxide b0 .
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due to the presence of a congested intramolecular system, the for-
mation of NACs is spontaneous by restricting the configurational
space of the reacting groups.

2. Conclusion

Tighter binding of transition state as compared with substrate
ground state is the most classical explanation for extremely high
efficiency of enzymatic catalysis.24 With our three examples, we
have demonstrated that a weak nucleophilic reagent as the termi-
nal oxygen atom of the carbonyl oxide can react with an adjacent
anhydride function inducing a pericyclic three-step process leading
to a bislactone moiety and an ether bridge. Moreover, these various
nucleophilic additions occurred at a low temperature (��60 �C)
and even in a nonpolar solvent as methylcyclohexane. We believe
that the initial short contact distances between such functional
groups gave rise to an enzyme-like rate acceleration.25
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